七月网

鱼群算法(鱼群算法和蚁群算法的区别)

七月网4420

一、人工鱼群算法有哪些

1、起源人工鱼群算法是李晓磊等人于2002年在动物群体智能行为研究的基础上提出的一种新型方盛优化算法,该算法根据水域中鱼生存数目最多的地方就是本水域中富含营养物质最多的地方这一特点来模拟鱼群的觅食行为而实现寻优。

鱼群算法(鱼群算法和蚁群算法的区别)

2、算法主要利用鱼的三大基本行为:觅食、聚群和追尾行为,采用自上而下的寻优模式从构造个体的底层行为开始,通过鱼群中各个体的局部寻优,达到全局最优值在群体中凸显出来的目的。

3该方法采用自下而上的寻优思路,首先设计单个个体的感知、行为机制,然后将一个或一群实体放置在环境中,让他们在环境的交互作用中解决问题。

4、生态学基础在一片水域中,鱼存在的数目最多的地方就是本水域富含营养物质最多的地方,依据这一特点来模仿鱼群的觅食、聚群、追尾等行为,从而实现全局最优,这就是鱼群算法的基本思想。鱼类活动中,觅食行为、群聚行为、追尾行为和随机行为与寻优命题的解决有较为密切的关系,如何利用简单有效的方式来构造和实现这些行为将是算法实现的主要为题。

5、人工鱼的结构模型人工鱼是真实鱼抽象化、虚拟化的一个实体,其中封装了自身数据和一系列行为,可以接受环境的刺激信息,做出相应的活动。其所在的环境由问题的解空间和其他人工鱼的状态,它在下一时刻的行为取决于自身的状态和环境的状态,并且它还通过自身的活动来影响环境,进而影响其他人工鱼的活动。

二、什么是鱼群算法

1、人工鱼群算法是一种基于动物行为的群体智能优化算法。该文提出一种改进的人工鱼群算法,在觅食行为中让人工鱼直接移动到较优位置,以加快算法的搜索速度,动态调整人工鱼的视野和步长,使其在算法运行初期保持最大值,并逐渐由大变小。该算法较好地平衡了全局搜索能力和局部搜索能力,提高了算法运行效率和精度。仿真结果表明,改进的人工鱼群算法收敛性能比原有算法提高了1倍以上。

2、关键词:人工鱼群算法;群体智能;优化

三、鱼群算法是什么

鱼群算法是指在一片水域中,鱼往往能自行或尾随其他鱼找到营养物质多的地方,因而鱼生存数目最多的地方一般就是本水域中营养物质最多的地方,人工鱼群算法就是根据这一特点,通过构造人工鱼来模仿鱼群的觅食、聚群及追尾行为,从而实现寻优,以下是鱼的几种典型行为:

1、觅食行为:一般情况下鱼在水中随机地自由游动,当发现食物时,则会向食物逐渐增多的方向快速游去。

2、聚群行为:鱼在游动过程中为了保证自身的生存和躲避危害会自然地聚集成群,鱼聚群时所遵守的规则有三条:分隔规则:尽量避免与临近伙伴过于拥挤;对准规则:尽量与临近伙伴的平均方向一致;内聚规则:尽量朝临近伙伴的中心移动。

3、追尾行为:当鱼群中的一条或几条鱼发现食物时,其临近的伙伴会尾随其快速到达食物点。

4、随机行为:单独的鱼在水中通常都是随机游动的,这是为了更大范围地寻找食物点或身边的伙伴。

OK,本文到此结束,希望对大家有所帮助。